Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

A ruthenium(II)-porphyrin-carbene complex with a weakly bonded methanol ligand

Masashi Kawai, Hidetaka Yuge and Takeshi Ken Miyamoto*

Department of Chemistry, School of Science, Kitasato University, Kitasato, Sagamihara, Kanagawa 228-8555, Japan
Correspondence e-mail: orgnmt|@kitasato-u.ac.jp

Received 17 August 2002
Accepted 23 October 2002
Online 8 November 2002

The title diphenylcarbene porphyrin complex (diphenyl-carbenyl- $\kappa C)($ methanol- $\kappa O)(5,10,15,20-$ tetra- p-tolylporphy-rinato- $\kappa^{4} N$)ruthenium(II) methanol solvate, $\left[\mathrm{Ru}\left(\mathrm{C}_{13} \mathrm{H}_{10}\right)\right.$ $\left.\left(\mathrm{C}_{48} \mathrm{H}_{36} \mathrm{~N}_{4}\right)\left(\mathrm{CH}_{4} \mathrm{O}\right)\right] \cdot \mathrm{CH}_{4} \mathrm{O}$, has a six-coordinate Ru atom with a methanol molecule as the second axial ligand. The carbene fragment is slightly distorted from an ideal $s p^{2}$ configuration, with a C (phenyl) -C (carbene) -C (phenyl) angle of 112.2 (3) ${ }^{\circ}$. The $\mathrm{Ru}-\mathrm{C}$ bond length of 1.845 (3) \AA is comparable with other carbene complexes. The two phenyl rings of the carbene ligand are perpendicular to the carbene plane. Methanol solvate molecules link the methanol ligands of adjacent porphyrin complexes via hydrogen bonds.

Figure 1
The molecular structure of (I), showing displacement ellipsoids at the 30% probability level. H atoms have been omitted for clarity.

Comment

Ruthenium-carbene complexes have attracted much attention in recent years as catalysts of the cyclopropanation of olefins (Trost et al., 2001). Some ruthenium-porphyrin-carbene complexes have been reported as effective catalysts because of their higher stereoselectivity and turnover numbers. However, ruthenium-porphyrin-carbene complexes are so unstable that, since the initial investigation by Collman et al. (1985), they have only been characterized using UV-visible or NMR spectroscopy. The first crystal structure of a ruthenium(II)-porphyrin-carbene complex, viz. $\left[\mathrm{Ru}(\mathrm{tpp})\left\{\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right\}\left(\mathrm{CH}_{3}-\right.\right.$ $\mathrm{OH})] \cdot \mathrm{H}_{2} \mathrm{O}$, (II) $\left(\mathrm{H}_{2}\right.$ tpp is 5,10,15,20-tetraphenylporphyrin),

McOH
(I)
was determined by Galardon et al. (1998). A methanol molecule was bound to the six-coordinate Ru atom trans to the carbene ligand and could be replaced by other ligands, such as PPh_{3}, pyridine or CO, in solution. Che et al. (2001) reported that ruthenium(II)-porphyrin diphenyl- or phenyl(allyloxycarbonyl)carbene complexes, recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ $\mathrm{CH}_{3} \mathrm{CN}$ in air, contained five-coordinate Ru atoms in the crystalline state. Both cases show that carbene complexes without α - and β-H atoms would be stable enough for isolation and crystallization even in air. We have synthesized a simple carbene complex, $\left[\mathrm{Ru}(\mathrm{ttp})\left(\mathrm{CPh}_{2}\right)\left(\mathrm{CH}_{3} \mathrm{OH}\right)\right] \cdot \mathrm{CH}_{3} \mathrm{OH}$ $\left(\mathrm{H}_{2} \mathrm{ttp}\right.$ is $5,10,15,20$-tetra- p-tolylporphyrin) (I), and here we compare its structure with those of some other ruthenium(II)-por-phyrin-carbene complexes.

As shown in Fig. 1, the Ru atom is six-coordinate in (I), similar to (II), while the Ru atoms are squarepyramidally five-coordinate in $\left[\mathrm{Ru}\left(\mathrm{P}^{*}\right)\left(\mathrm{CPh}_{2}\right)\right] \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$, (III), and $\left[\mathrm{Ru}\left(\mathrm{P}^{*}\right)\left\{\mathrm{C}(\mathrm{Ph}) \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right\}\right] \cdot-$ $3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$, (IV) $\left\{\mathrm{H}_{2} \mathrm{P}^{*}\right.$ is $5,10,15,20-$ tetrakis $[(1 S, 4 R, 5 R, 8 S)-1,2,3,4,5,6,-$ 7,8-octahydro-1,4:5,8-dimethanoan-thracen-9-yl]porphyrin\} (Che et al., 2001). The $\mathrm{Ru}-\mathrm{C}$ (carbene) bond length in (I) is similar to that in (II) [1.829 (9) A], and the Ru-N(porphyrin) bond lengths are also within the range previously reported for ruthenium(II)-porphyrin complexes. A methanol molecule is bonded to the Ru atom trans to the
carbene ligand, and is associated with two other methanol solvate molecules through hydrogen bonding. The RuO (methanol) bond length in (I) is significantly longer than that in (II) [2.293 (6) \AA], perhaps due to these hydrogen bonds.

The carbene fragment in (I) is distorted from an ideal $s p^{2}$ configuration, as the C (phenyl) -C (carbene) -C (phenyl) angle is 112.2 (3) ${ }^{\circ}$, similar to that in the diphenylcarbene complex (III) [112.1 (5) ${ }^{\circ}$. The two phenyl groups are oriented perpendicular to the plane of the carbene fragment, adopting a face-to-face arrangement, as observed in (III). The projection of the phenyl groups on to the porphyrin plane reveals a staggered configuration with regard to the $\mathrm{Ru}-\mathrm{N}$ bonds; the $\mathrm{N} 2-\mathrm{Ru}-\mathrm{C} 49-\mathrm{C} 50$ and $\mathrm{N} 4-\mathrm{Ru}-\mathrm{C} 49-\mathrm{C} 56$ torsion angles are 27.1 (3) and $26.4(3)^{\circ}$, respectively. Because of steric repulsion between the porphyrin group and the phenyl groups of the carbene ligand, the porphyrin system in (I) is slightly distorted into a saddle conformation, whereas those of (III) and (IV) in the square-pyramidal configuration are severely distorted. The largest deviations from the $\mathrm{C}_{20} \mathrm{~N}_{4}$ least-squares plane in (I) are -0.187 (4) and 0.180 (3) \AA for atoms C2 and C 7 , respectively. The Ru atom is slightly out of this leastsquares plane by 0.1139 (7) \AA towards the carbene ligand, close to the value of $0.12 \AA$ in (II), but less than the values of 0.19 and $0.22 \AA$ in (III) and (IV), respectively.

Experimental

The title compound was prepared according to the procedure of Galardon et al. (1998). A $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution containing equimolar amounts of $\left[\mathrm{Ru}(\mathrm{ttp})(\mathrm{CO})\left(\mathrm{CH}_{3} \mathrm{OH}\right)\right]$ and the diaza compound $\mathrm{N}_{2}=\mathrm{CPh}_{2}$ was refluxed under N_{2} for 3 h . After removal of the solvent in vacuo, the residue was purified by column chromatography on silica gel with toluene as eluant. The compound is stable in air at room temperature. Crystals of (I) suitable for X-ray diffraction were prepared by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}$.

Crystal data

$\left[\mathrm{Ru}\left(\mathrm{C}_{13} \mathrm{H}_{10}\right)\left(\mathrm{C}_{48} \mathrm{H}_{36} \mathrm{~N}_{4}\right)-\right.$
$\left.\left(\mathrm{CH}_{4} \mathrm{O}\right)\right] \cdot \mathrm{CH}_{4} \mathrm{O}$
$M_{r}=1000.17$
Monoclinic, $P 2_{1} / c$
$a=12.4608(12) \AA$
$b=17.744(2) \AA$
$c=23.7491(13) \AA$
$\beta=122.428(6){ }^{\circ}{ }^{\circ}$
$V=5128.0(8) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.295 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=14.4-15.0^{\circ} \\
& \mu=0.35 \mathrm{~mm}^{-1} \\
& T=296(2) \mathrm{K} \\
& \text { Prism, dark red } \\
& 0.28 \times 0.14 \times 0.13 \mathrm{~mm}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA{ }^{\circ},{ }^{\circ}$).

$\mathrm{Ru}-\mathrm{N} 1$	$2.051(3)$	$\mathrm{Ru}-\mathrm{N} 4$	$2.051(3)$
$\mathrm{Ru}-\mathrm{N} 2$	$2.040(2)$	$\mathrm{Ru}-\mathrm{C} 49$	$1.845(3)$
$\mathrm{Ru}-\mathrm{N} 3$	$2.042(3)$	$\mathrm{Ru}-\mathrm{O} 1$	$2.362(3)$
$\mathrm{N} 1-\mathrm{Ru}-\mathrm{N} 2$	$89.57(11)$	$\mathrm{N} 4-\mathrm{Ru}-\mathrm{O} 1$	$85.93(10)$
$\mathrm{N} 1-\mathrm{Ru}-\mathrm{N} 3$	$171.76(11)$	$\mathrm{C} 49-\mathrm{Ru}-\mathrm{N} 1$	$92.74(13)$
$\mathrm{N} 1-\mathrm{Ru}-\mathrm{N} 4$	$89.80(11)$	$\mathrm{C} 49-\mathrm{Ru}-\mathrm{N} 2$	$93.55(13)$
$\mathrm{N} 1-\mathrm{Ru}-\mathrm{O} 1$	$87.29(11)$	$\mathrm{C} 49-\mathrm{Ru}-\mathrm{N} 3$	$95.50(13)$
$\mathrm{N} 2-\mathrm{Ru}-\mathrm{N} 3$	$89.85(11)$	$\mathrm{C} 49-\mathrm{Ru}-\mathrm{N} 4$	$93.53(12)$
$\mathrm{N} 2-\mathrm{Ru}-\mathrm{N} 4$	$172.91(11)$	$\mathrm{C} 49-\mathrm{Ru}-\mathrm{O} 1$	$179.46(12)$
$\mathrm{N} 2-\mathrm{Ru}-\mathrm{O} 1$	$86.99(10)$	$\mathrm{C} 50-\mathrm{C} 49-\mathrm{C} 56$	$112.2(3)$
$\mathrm{N} 3-\mathrm{Ru}-\mathrm{N} 4$	$89.7(11)$	$\mathrm{Ru}-\mathrm{C} 49-\mathrm{C} 50$	$123.5(2)$
$\mathrm{N} 3-\mathrm{Ru}-\mathrm{O} 1$	$84.47(11)$	$\mathrm{Ru}-\mathrm{C} 49-\mathrm{C} 56$	$124.2(2)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H47 \cdots O2 $^{\mathrm{i}}$	0.82	1.910	$2.704(5)$	163
O2-H51 \cdots O1	0.82	2.204	$2.949(6)$	151

Symmetry code: (i) $-x, 1-y,-z$.

Data collection

Rigaku AFC-7R diffractometer $\omega / 2 \theta$ scans
12304 measured reflections

$$
\begin{aligned}
& n=-16 \rightarrow 0 \\
& k=0 \rightarrow 23 \\
& l=-30 \rightarrow 30
\end{aligned}
$$ 11769 independent reflections 6589 reflections with $I>2 \sigma(I)$

$R_{\text {int }}=0.030$
$\theta_{\text {max }}=27.5^{\circ}$

Refinement

Refinement on F^{2}

$$
\left.\begin{array}{rl}
w= & 1 /[
\end{array} \sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0531 P)^{2}\right)
$$

H -atom parameters constrained

$$
h=-16 \rightarrow 0
$$

3 standard reflections every 150 reflections intensity decay: 0.9%

$$
R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044
$$

$$
w R\left(F^{2}\right)=0.128
$$

$$
S=1.02
$$

$$
11769 \text { reflections }
$$

$$
635 \text { parameters }
$$

The positions of the methanol H atoms were refined as rotating methyl and hydroxy groups, with $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $\mathrm{O}-\mathrm{H}=0.82 \AA$, respectively. All remaining H atoms were placed in geometrically idealized positions, with $\mathrm{Csp} p^{2}-\mathrm{H}=0.93 \AA$ and $\mathrm{Cs} p^{3}-\mathrm{H}=0.96 \AA$. The isotropic displacement parameters of all the H atoms were constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{O})$.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: CrystalStructure (Molecular Structure Corporation \& Rigaku, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TR1039). Services for accessing these data are described at the back of the journal.

References

Che, C.-M., Huang, J.-S., Lee, F.-W., Li, Y., Lai, T.-S., Kwong, H.-L., Teng, P.-F., Lee, W.-S., Lo, W.-C., Peng, S.-M. \& Zhou, Z.-Y. (2001). J. Am. Chem. Soc. 123, 4119-4129.
Collman, J. P., Brothers, P. J., McElwee-White, L., Rose, E. \& Wright, L. J. (1985). J. Am. Chem. Soc. 107, 4570-4571.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Galardon, E., Le Maux, P., Toupet, L. \& Simonneaux, G. (1998). Organometallics, 17, 565-569.
Molecular Structure Corporation (1993). MSC/AFC Diffractometer Control Software. Version 5.1.0. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation \& Rigaku (2001). CrystalStructure. Version 2.00. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Trost, B. M., Toste, F. D. \& Pinkerton, A. B. (2001). Chem. Rev. 101, 2067-2096.

